LangChain
Build context-aware reasoning applications
★ 4.3
Framework for developing applications powered by language models. Chain LLMs together with tools, memory, and agents. The standard for LLM apps.
93K
GitHub Stars
supported
TypeScript
medium
Learning Curve
4.0
DX Score
Preise
Model
free
Kostenlose Stufe
MIT licensed, fully open source
Paid
LangSmith for observability
Funktionen
- ✓ LLM chains
- ✓ Agents and tools
- ✓ Memory systems
- ✓ RAG support
- ✓ Vector store integrations
- ✓ Document loaders
- ✓ Output parsers
- ✓ Callbacks and tracing
- ✓ LangGraph for workflows
Vorteile
- + Most popular LLM framework
- + Huge integration ecosystem
- + Active development
- + Great documentation
- + Strong community
Nachteile
- - Abstraction can be heavy
- - Frequent breaking changes
- - Can be overkill for simple apps
- - Performance overhead
Am besten für
startup enterprise
llm ai agents rag chains