Zum Hauptinhalt springen
R

Ray Serve

Scalable model serving library

A scalable model serving library for building online inference APIs. Framework-agnostic, designed for deploying machine learning models alongside business logic.

33K
GitHub Stars
none
TypeScript
steep
Learning Curve
4.0
DX Score

Preise

Model
free
Kostenlose Stufe
Apache 2.0 licensed, fully open source

Funktionen

  • Framework-agnostic
  • Model composition
  • Dynamic scaling
  • Request batching
  • FastAPI integration
  • LLM optimizations
  • Response streaming
  • Multi-model serving
  • GPU support

Vorteile

  • + Works with any ML framework
  • + Excellent for LLM serving
  • + Scales automatically
  • + Great Python integration
  • + Active development

Nachteile

  • - Complex for simple cases
  • - Ray cluster overhead
  • - Learning curve
  • - Resource intensive

Am besten für

enterprise startup

Alternativen

ml-serving inference llm scalable ray