R
Ray Serve
Scalable model serving library
A scalable model serving library for building online inference APIs. Framework-agnostic, designed for deploying machine learning models alongside business logic.
33K
GitHub Stars
none
TypeScript
steep
Learning Curve
4.0
DX Score
Preise
Model
free
Kostenlose Stufe
Apache 2.0 licensed, fully open source
Funktionen
- ✓ Framework-agnostic
- ✓ Model composition
- ✓ Dynamic scaling
- ✓ Request batching
- ✓ FastAPI integration
- ✓ LLM optimizations
- ✓ Response streaming
- ✓ Multi-model serving
- ✓ GPU support
Vorteile
- + Works with any ML framework
- + Excellent for LLM serving
- + Scales automatically
- + Great Python integration
- + Active development
Nachteile
- - Complex for simple cases
- - Ray cluster overhead
- - Learning curve
- - Resource intensive
Am besten für
enterprise startup
ml-serving inference llm scalable ray